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1. Introduction. Let W(t), t > 0, W(O) - 0 be a standard Wiener

process, independent of N(t), t _ 0, N(0) - 0, a Poisson process with

(constant) unit jumps, and E1I(t) - Xt, t > 0. Let their sigma fields be

F(t) - a(W(s),O < s < t) and G(t) a(N(s),O < < < t), respectively. Let

X(t) be a stochastic process that (for - a X ) satisfies the Ito stochastic
at t

differential equation

(1.1) Xt(t) - u(X(t))dt + dW(t) + dN(t)

X(O) - x

where x is real, and u(X(t)) is measurable with respect to cr(P(t) U G(t))

(i.e. u is non-anticipative) and satisfies, for A, B constants, B > 0,

and IAI < B,

(1.2) lu-AJ < B

for all 0 _< t < T, 0 < T < - a constant. Cue cost function for a given

u satisfying (1.2) is, for a > 0 a constant, and 9(x) a symetric positive,

increasing on the positive x-axis function of polynomial growth as x

that is, for some 0 > 0,

(L.3) c(x)/fxlJ 0 as Jxj -- p(x) --. and cp(x)-. as x



(1.4) J(u) !e'"(cP(x(s)) + Iu(S)I)ds.
0

Another cost function to be considered is

(1.5) K(u) - e ((S)) (s)))ds.
a

This latter cost function will be briefly treated in section 4.

The object is to characterize the optimal u for which J or 'K

is minimized, respectively. The cases T < asand T - w are treated

separately. The existence of an optimal u depends on assumptions about

the asymptotic behavior of certain partial differential-difference equ-

ations. The method employs a suitable Bellman equation, a maximum

principle for parabolic partial differential-difference equations and

the Ito rule. The method follows [41.

2. Finite Interval Control.

Let T < -. Define, for 0 < t < T,

(.) x~, e-a (s)) + Ju(X(s))))dx

lu-AI<B 0

and V(x,O) x .

Writing a + r - , heuristic arguments (or seeP If
0 0 h t

(21, pp. 179-180) yield a Bellman equation (where V a V(x,t),
-x a V - L2v  UaUW
V 6 x 'xx N 2 ,ut~)

(2.2) tp(x) + tnf (V +lul + V *V NT

IU'-AV B XTC 2 xt U

+ X(V(xMlt)-V) - 0.
Distribution/AvaIlabllfity Codes

DistAvail and/or--'-
I '~ DlSt P004a1

L A



Define

[ (B-A)(1-a) if a > 1

(2.3) g(a) inf (ua+luI) - 0 if tal < Ilu-Ai<B
(A+B)(1+a) if a < - 1

Then (2.2), (2.3) become

(2.4) z + g(V +V-V + X(V(x+1,t)-V) - 0.
(2.4 + g(V)+t

On heuristic grounds, a solution to (2.4) is sought such that for

functions b1 (t) < b2 (t); 0 < t < T to be determined,

I
(2.5a) cp + (A+B)(1+V ) + I Vx-cV-V t

X) + 7xxaVt

+ ,(V(x+lt)-V) - 0

for x < bl(t),

(2.5b) + V - aV-V t + (V(+l,t)-V) 0

for bI(t) < x < b2(t) ,

and

(2.5c) p + (B-A)(I-V ) + V - av-v + %(V(X-+lt)-V) - 0
x 2 xx 't

for x > b2 (t).

The functions b1 (t), b2 (t) are to be obtained from these matching

conditions, where for 0 < t < T,

V - VI in (2.5a), V a V2 in (2.5b), V a V3 in (2.5c):

v (b (C),t) - V2 (bl(t),t)

(2.6)

V2 (b2 (t),t) - V3 (b 2 (t),t)
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Vl,x(b (t),t) - V2,x(bl(t),) .

V2 ,x(b 2 (t),t) - V3,x (b2 (t),t)- +1.

(2.7) V1 (xO) -V2 (xO) - V3 (x,O) , 0.

(2.7a) V3  (b2 (t),t) > 0

(2.7b) V2,xx(b(t),t) > 0.

For R a constant, denote

(2,8) J(xt,R) a- eaSE(cp(Rs+W(s)+NI(s)+x)+IRI ds.
0 -

It may be verified that J(x,t,A+B) is a particular solution to

(2.5a), that J(x,t,0) is a particular solution to (2.5b) and that

J(x,t,A-B) is a particular solution to (2.5c). The solutions to (2.5a-c)

will be shown to follow if this condition holds.

Assumotion 1. There is a non-zero solution, for each t,

H I(x,t) with H1 (x,0) - 0 to (Ha(x,t))

1
(2.9) (A+B)(l+H + - al-Ht + 7X(H(x+l,t)-H) 0

such that

H t(x,t ) - O(e+rx

(2.10) H,xx(xt) = o(e +)

for somer > 0, A> 0 , as x - - c.

Also, there is a non-zero solution R2 (x,t) wEith R2 (x,O) - 0 to

(2.11) H - al-H + .(H(x+l,t)-I) - 0.

2 xx t

Further, there is a non-zero solution R 3 (x,t) -fth R 3 (N.) -0

to

(2.12) (3-A)(l- x) + 1 - aHHt + X(H(x+lt)-H) -0
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such that

(2.13) H3 (x,t) O(e k x)

H3,xx(x,t) - O(e cx)

for some k > 0, C > 0, all t. as x + a.

If the above Assumption 1 holds then let

(2.14a) VI(x,t) a J(x,t,A+B) + H1 (x,t)

(2.14b) V2 (x't) a J(x,t,O) +R 2 (x,t)

(2.14c) V3(x,t) a J(x,t,A-B) + H 3(xt).

Assumption 2. The V A(xt), 1 < I < 3 of (2.14a-c) which satisfy

(2.5a-c) respectively, and conditions (2.6). (2.7), determine b1 (t) < b 2 (t).

This motivates

Theorem 1. If the conditions of section 2 and Assumptions I and 2

hold for 0 < t < T < -, then the optimal u0 may be expressed in closed

loop form as f A+B if X0(t) < bI(-t)

(2.15) u0 (X0 (t)) - 0 if b1 (T-t) < X0 (t) < b2 (T-t)

A-B if X0 (t) >W b2 (T-t)

wher'e

(2.16) dX0(t) - u0 kX 0 (.)1dt + dW(t) + dN(t)

x0 (0) -X.

Proof. Lee D - V (omitting (x,t) arguments).~XX,

Claim. D > 0 all (x,t).

Proof of Claim. From (2.4), omitting (x,t),let
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(2.17) L(D) g g(DO) + IDxx-(a+ )-)D- ODt

From (1.3), the conditions on y, and (2.8) - (2.14), it follows

that, for each t,

(2.18) D > 0 as jxj

Suppose that there is an r > b2 and a Y, 0 < y < 1 for fixed t, such

that

(2.19) D(x) < 0 b2 < r-y < x < r

(2.19a) D(r) - 0

(2.20) D(x) > 0, x > r.

We now obtain a contradiction to (2.19).

From (1.3), cpxx > 0, hence (2.17) and (2.20) imply that

L(D) < 0, x > r-l.

It follows from a maximum principle (Lemma l(after multiplying

by -1)[1 , p. 34) that D cannot have a negative minimum for the fixed

t, for x > r-y. From this and (2.7a), (2.18),(2.20), if follows that if D

were negative for any x > r-y, it would have a negative minimum, which

is not allowed by the maximum principle. Hence D > 0 for x > r-y,

contradicting (2.19) and completing the claim for x > b2.

For x < b2, a similar argument using (2.7b), (2.18) yields that D(x) > 0

for b2-6 < x < b2 for appropriate 0 < 5 < 1. Continuing the argument by

iteration yields that D(x) > 0 all x, for each t.

The claim implies that V is increasing in x for each t andx

hence that (2.5)-(2.14) indeed yields a solution to the Bellman equation

(2.4).

To show u0 is optimal, define, for 0 < t < T

(2.21) K(O(t),t) a V(X(t),T-t)e-a

--.. -
.---



7

Noting that K(X(O),O) - V(x,T) and K(X(T),T) = 0, the Ito rule

([2] ,pp.12 5-12 6) applied to (2.21) for an admissible u and its corres-

ponding X(t) yields, upon integrating from 0 to T, and adding and sub-

tracting appropriate terms, that

(2.22) e-aS(cp(X(s)) + Iu(X(s))l)ds - V(xT) -

1:e- t(c(X(s)) + g(V (X(s),T-s)) + 1 vxx(x(s),T-s)

J0 x

-aV(X(s),T-s) - Vt(X(s),T-s))ds

+0e-aS v(X(s) ,T-s I)d(s)

0

+ e'asV (X(s),T-s)dW(s)
4J x
0

+ e a(u(X(s))Vx(X(s),T-s) + u(X(s)I-g(Vx(X(s),T-s)))ds.

0

The fourth integral on the right side of (2.22) is non-negative.

Upon taking expectations in (2.22), the third integral on the right

becomes zero.

On combining the first and second integrals on the right after

taking expectations, and suppressing the X(s) and the (X(s),T-s)

arguments, one obtains from (2.22),

(2.23) euX(c +IuI)ds - V(xT) -
0

e_ (4-gV )+ I V - aVV + X(V(X(s)+l,T-s)-V))ds
0-x 2i x t

e'asz E(uv x+ l -gv (V))as.
0

i0



The first integral on the right of (2.23) is zero by (2.4) and the

second integral on the right is non-negative by definition of g in

(2.3), with equality if u-u0 * Hence from (2.23),

(2.24) ff0Oe (cp + IJujIds > V (x,T)
0

with equality if u-u 0, showing that u0a is optimal. This completes

Theorem 1.

3. Infinite Interval Control. Assume that the conditions of section 2

hold and let T - *The cost function is then

(3.1) 3(u) Je E(tp(X(s)) + Iu(%(s))I)ds

which is finite by (1.3) for admissible u.

Define V m V(x) as

(3.2) VWx i J'e-asE(,,(X(,)) + lu(X(s)I)ds
fu&AI:B 0

where X(O) -x, a constant.

By writing amJ + heuristic arguments (see[21, pp. 179-180),

yield a Bellman equation, using the abbreviated arguments in (2.2),

(3.3) ;7 (x) + inf (V+u)+ IV aV + X(V(X+l) -V) 0.

x 2 Tx
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As in (2.3), (2.4),

1

(3.4) p(x) + gCV + - V - V + X(V(x+l)-V) - 0

On heuristic grounds, a solution to (3.4) is soi4ht such that for

numbers bI < b2 to be determined below, omitting x arguments,

(3.5a) P + (A+B)(l+V ) + V V - aV + ) V(x+l)-V) 0 o
x 2 xc

for x < b1

(3.5b) p + l - tV + X(V(%+I)-V) - 0
2xz

for b< < b2 ,

(3.5c) cp + (B-A)(1-Vx ) + x - av + X(V(X+1)-V) 0 0

for x > b2.

The b1 < b2 are to be determined from the following matching con-

ditions, where V -V1 in (3.5a), V a V2 in (3.5b) and V = V3 in (3.5c).

* v1( b) - V2 (bl)

V2(b2) - V3 (b2 )

(3.6) Vlx (b1) - V2,x(b )  -

V2,x (b 2) V3 ,x(b2

(3.6a) V3,xx(b2) > 0

V2,xx(b1 ) > 0.

For R a constant, denote

(3.7) J(x,R) a Je-aSE(t(Rs+W(s)+W(s)+)+IR)ds.

It may be verified that J(x,A+B) is a particular solution to (3.5a),

that J(.xv.) -i3 a particular solution to (3.5b) and J(x,A-B) is a



10

particular solution to (3.5c).

Assumption 3. There is a non-zero solution H (x) to (omitting x

argument)

(3.8) (A+B)(I+H ) + - H - aH + X(H(x+l)-H) 0

such that

(3.9) H1 (x) - 0(e + UX

H 1,xx()- O(e +vx

for some u > 0, v > 0, as x -- - m.

There is a non-zero solution H2 x) to

12

(3.10) R - aH + )(d(x+l)-H) = 0.(3. 2 lO xx

There is a non-zero solution H 3 (x) to

1
(3.11) (B-A) (1-H x) + y H xx- a + X(H(x+l)-H) 0

such that

(3.12) E3 (x) - O(e - qx)

H3,xx(x) - O(e-
p x)

for some p > 0, q > 0 as x - + -.

Now one sets

(3.L3a) V (x) - J(x,A+B) + HX)

(3.13b) V 2 (x) - J(x,O) + H 2 (x)

(3.13c) V3 (x) -J(x,A-B) + H3(x)

a



AssuMption 4.

(3.14) The b 1< b 2are determined by the V 11(x), 1 < A < 3

of (3.13 a-c).

Theorem 2. Under the assumptions of this section, the optimal

u =u may be expressed as

A+B if xp~t) :gb,

hee (3.15) u I(X.l(t)) 0 - if b, < X~)<b

(3.16) dY.je) - u,(X 1(t))dt + dW(t) + dN(t)

X1 (O) - X.

Proof. Let D -V ,x, suppressing the x-argumerits.

Claim. D>O0 all x.

Proof of Claim. From (3.4)

(3. 17) K (D) u (D ) + - D -(a+X)D - -qpx-%D(x+l).
z 2 xx

By an argument identical to that given in the pooof of Theorem 1,

using the appropriate maximum principle ([11, Theorem 18, p. 53), it

follows that D(x) > 0 for all x.

The claim implies that V Xis increasing in x and hence that

(3.5)-(3.14) yields a solution to (3.4).

To show u1 is optimal, define, for t > 0,

(3.18) R(X(t)) a V(X(t))e-ct
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Noting that R(a) -VWx, the Ito rule ([2], pp. 125-126) applied to

R(X(t)) foll.owed by integration and adding and subtracting appropriate

terms yields (arguments on the right side not indicated are X(s))

(3.19) ~ eaS(cp(X(s)) + Iu(X(s))I)ds + V(X(t))e-at-V(x)
0

e-as ~ IC + g V)+.1 a.cV) ds + reasVdN(s)
0 x 2=

+ Jeas V xdWs + feas (cp+Jul -S(V ))ds.

The fourth integral on the right is non-negative by the definition of

g(x). Upon taking expectations in (3.19), the third integral on the

right vanishes, and the first and second terms on the right may be

combined to obtain (again the arguments not indicated are X(s))

(3.20) ~ eas E(,+IuI)ds + e atEV(X(t))-V(x)-
0

e~as~cpg(V +-1 v -cr + X,(VG(s)+l)-V))dsj~S~x 2 xx

+ fC-rsE(UV + Jul - g(V ))ds.
0

By (3.4), the first integral on the right of (3.20) is zero, and the

second integral on the right is non-negative by the definition of g.

From (1.3), (3.5)-(3.14), and the bounds on Jul, it follows that there

is a constant L > 0 such that for all t,

(3.21) E(V(X(t)))e-' < Le-a

letting t - in (3.20), and using (3.21) one obtains
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(3.22) Joe SE(r+ u))ds > V(x)

and (3.23) Joe'a8E( (X(s)) + }u (X (s))})ds V(x)

so that (3.22) , (3.23) yield that u is optimal, completing Theorem 2.

4. Alternate Cost Function. The same models as in sections 1-3 with

certain other cost functions may be treated in a similar way. For

example, the cost function (1.5) yields, for T < c, a Bellman equation

(the (x,t) arguments are omitted)

(4.1) + h(V ) + - V= -aV-V + X(V(i+l,t)-V) - 0
x 2 oc t

where

(A+)(a+A+B) if > A46

2 a 2

(4.2) h(a) - inf (ua+u2) - if A-B<- 2<A+B
Iu-AI<B 4

a
(A-B)(a-fA-B) if -- A-B

and from (4.2),

(4.3) u -A-B if --<A-B; u - if A-B < < A+B;
2 22
a

- A+B if - T > A+B.

One seeks a 3olution to (4.1) of the form

(4.4a) cp+ (A+B)(V +A+B) + V -aV-V + )(V(X+l;t)-V) -0
x 2 xoc t

if x < k1 (t)

(4.4b) - (V )2 + V - aV-V + .(V(x+lt)-V) - 0
* 4 x 2 xoc t

if kI(t) < x < k2 (t)

__
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(4.4c) c + (A-B)(V +A-B) + 1 V3=- aV-V + %(V(X+It)-V) - 0

if x > k2 (t).

The k1 (t), k2 (t) are to be determined by, for V a V1 in (4.4a),

V - V2 in (4.4b), V 3 V3 in (4.4c), for 0 e t < T,

V 1 (k (t) ,t) = V2 (kl(t),t)

V2 (k 2(t),t) - V3 (k 2 (t),t)

(4.5)
V 1 x (k (t),t) - V 2 , x (1 (),) - - 2(A+B)

V 2x(k 2(t),t) - -2(A-B).

and

(4.6) V1 (x,O) - V2 (xO) - V3 (x,O) - 0 all x.

(4.6a) V 2 , (k (t),t) > 0

V3 x(k 2 (:),t) > 0.

The maximum principle ([1], Lem 1 p. 34) may be applied to (4 .4a),

(4.4c) as in Theorem 1, as these are linear in the V term. Similarly,x

for R a constant, if one defines

(4.7) L(xt,K) a e aSE(cp(s4W(s)+N(s)+x)-1.2)ds
0

then L(x,A+B) is a particular solution to (4.4a) and L(x,A-B) is a

particular solution to (4 .4c). Adding an assumption similar to



assumptions 1 and 2 in section 2, and on the boundedness of solutions

to (4.4b), one may obtain the optimal u3 for this problem implicitly

in the form

fA+s if X3 (t) Skl(T-t)

(4.8) u3 (X(t),t)- -V(X3(),) if k<k
2 X.3(e),t)2 k(T-t)<X3 (t) .k2 (T-t)

A-B if X3 (t) >k 2 <T-t),

where

dX3 (t) - u3 (X3 (t))dt + dN(t) + dW(t),

using arguments as in Theorem 1.

The case T - , parallels that of section 3. The Bellman equation

is, for V mVW,

(4. 9) ,+h (Vx ) + Vxx - aV + X(V(x+l)-V) 0

and a solution to (4.9) is sought of the form

(4.loa) cp+ (A+) (V +A+B) +1. V=-av + x(V(x+)-V) -. 0

for x <

1 2 1
(4.10b) -L(V2 ) + I V=- aV + X(V(x+l)-V) - 04 x 2

for< x <

and

(4. loc) o + (A-B)(V+A-B) + -1 V aV + X(V(x+l)-V) -0

for x >"

where the constants 1 < 12 are to be determined from the matching

conditions where V a V1 in (4.10a), V a V2 in (4.10b), V a V3 in (4.10c)

II
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V 1 (11) -V2(1

VZ(2) - V3()
(4.1-)

V~ ~ I' ,x(1 = - 2(A+B)

V2 ,x( 2 ) - V3 ,x( 2 ) - -2(A-B).

(4.lla) V2 , xx(i ) > 0

V3 ,xx(L2) > 0.

If

(4.12) L(x,R) a feas(E(cp(Rs+W(s)+N(s)+x)+R2 )ds,

it may be shown that L(xA+B) is a particular solution to (4.10a) and

L(x,A-B) is a particular solution to (4.10c). Adding an appropriate

assumption similar to that in section 3, and on the boundedness of

solutions to (4.10b), the optimal u4 is implicitly expressed as

A"~ if X4 (t) :5 1

(4.13) u4 (X4 (t)) - -I VX 4(t)) if

A-B if X4 (t) > 12

where

dX4 (t) - u4 (X4 (t))dt + dW(t) + dN(t)

XY(O) - x

5. Additional Constraints.

Certain additional constraints may be incorporated and treated

by those methods. For example, in the case T < m of section 2, the added

constraint
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(5.1) E(cp(X(a)) + Iu(X(a))1) C,

where a is a constant, 0 < a < T and C > 0, may be incorporated by

adding the condition

Vt(xt)t - eaaC

t-a

to the conditions (2.6),(2.7), and proceeding as before. See [3] for

another approach.

6. Extensions.

The method applies to a variant of the stochastic differential

equation (1.1). Let, for 0 0 0 a constant,

(6.1) Xt (t) - (OX(t)+u(X(t))dt + dW(t)4dN(t),

X(0) -x,

with control u(X(t)) satisfying (1.2) as before. Similarly, the cost

function J(u) is as in (1.4).

The appropriate Bellman equation for T < - is, where g is as

in (2.3),

I

(6.2) 0 - c(x)+xV +g(Vx)+ - Vxx-Vt+X(V(x+l)-V)-aV.
x 2 x

A solution of the form (2.5)-(2.7) is sought as before. To obtain

a particular solution to, e.g., the Bellman equation

(6.3) 0 - c(x)+xV +(A+B)(l+V )+ IV -aV-Vx t 2xx t

+X(V(x+lt)-V) - 0,
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denote

(6.4) Y(t) e- e- X(t).

Then

(6.5) dY(t) e' Ot(A+B)dt + e'1tdW(t)

+ e'PtdN(t)

Hence, integrating (6.5)

(6.6) Y(t) - x + r-oe-PS dW(s)
0

+ r-e'PSdN(s) + (A+B) o.P ds
0 0

or

(6.7) X(t) = xe*t+ (A-)(ePt-1) + ep(t'S)dW(s)

+ jte (t'S)c(

It may now be verified that

(6.8) J(x,tA+B) aE O(p(xe Ot+ "ip-(ep-t)+ rpe(ts)dW(s)

+ r-eP(t-s)d(s)) + (&+B))ds

is a particular solution to (6.3). The rest of the construction and

matching and initial conditions and proofs are as in section 2.
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